Published in

Oxford University Press, Geophysical Journal International, 1(208), p. 221-225, 2016

DOI: 10.1093/gji/ggw387

Links

Tools

Export citation

Search in Google Scholar

Frequency scaling of seismic attenuation in rocks saturated with two fluid phases

Journal article published in 2016 by Samuel Chapman, Beatriz Quintal, Nicola Tisato ORCID, Klaus Holliger
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Seismic wave attenuation is frequency dependent in rocks saturated by two fluid phases and the corresponding scaling behaviour is controlled primarily by the spatial fluid distribution. We experimentally investigate the frequency scaling of seismic attenuation in Berea sandstone saturated with two fluid phases: a liquid phase, water, and a gas phase, air, carbon dioxide or nitrogen. By changing from a heterogeneous distribution of mesoscopic gas patches to a homogeneous distribution of pore scale gas bubbles, we observe a significant steepening of the high-frequency asymptote of the attenuation. A transition from one dominant attenuation mechanism to another, from mesoscopic wave-induced fluid flow to wave-induced gas exsolution dissolution (WIGED), may explain this change in scaling. We observe that the high-frequency asymptote, for a homogenous pore scale gas bubble distribution, scales in accord with WIGED.