Published in

Nature Research, Nature Communications, 1(9), 2018

DOI: 10.1038/s41467-018-03395-6

Links

Tools

Export citation

Search in Google Scholar

Genetic study links components of the autonomous nervous system to heart-rate profile during exercise

Journal article published in 2018 by Niek Verweij ORCID, Yordi J. van de Vegte, Pim van der Harst ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHeart rate (HR) responds to exercise by increasing during exercise and recovering after exercise. As such, HR is an important predictor of mortality that researchers believe is modulated by the autonomic nervous system. However, the mechanistic basis underlying inter-individual differences has yet to be explained. Here, we perform a large-scale genome-wide analysis of HR increase and HR recovery in 58,818 UK Biobank individuals. Twenty-five independent SNPs in 23 loci are identified to be associated (p < 8.3 × 10−9) with HR increase or HR recovery. A total of 36 candidate causal genes are prioritized that are enriched for pathways related to neuron biology. No evidence is found of a causal relationship with mortality or cardiovascular diseases. However, a nominal association with parental lifespan requires further study. In conclusion, the findings provide new biological and clinical insight into the mechanistic underpinnings of HR response to exercise. The results also underscore the role of the autonomous nervous system in HR recovery.