CSIRO Publishing, Animal Production Science, 4(59), p. 619, 2019
DOI: 10.1071/an17436
Full text: Unavailable
Data from 127539 Hereford and Braford cattle were used to compare estimates of genetic parameters for navel, conformation, precocity, muscling and size visual scores at yearling, using linear and threshold animal models. In a second step, these models were cross-validated using a multinomial logistic regression in order to quantify the association between phenotype and genetic merit for each trait. For navel score, higher heritability was obtained with the threshold model (0.42 ± 0.02) in relation to the linear model (0.22 ± 0.02). However, similar heritability was estimated in both models for conformation, precocity, muscling and size, with values of 0.18 ± 0.01, 0.19 ± 0.01, 0.19 ± 0.01 and 0.26 ± 0.01, respectively, using linear model, and of 0.19 ± 0.01, 0.19 ± 0.01, 0.20 ± 0.01, and 0.29 ± 0.01, respectively, using threshold model. For navel score, Spearman correlations between sires’ breeding values predicted using linear and threshold models ranged from 0.60 (1% of the best sires are selected) to 0.96 (all sires are selected). For conformation, precocity, muscling and size scores, low changes in sires’ rank are expected using these models (Spearman correlations >0.86), regardless of the proportion of sires selected. Except for navel with the linear model, the direction of the associations between phenotype and genetic merit were in accordance with its expectation, as there were increases in the phenotype per unit of change in the breeding value. Thus, the threshold model would be recommended to perform genetic evaluation of navel score in this population. However, linear and threshold models showed similar predictive ability for conformation, precocity, muscling and size scores.