Published in

Elsevier, NeuroImage, 2(37), p. 474-488, 2007

DOI: 10.1016/j.neuroimage.2007.05.012

Links

Tools

Export citation

Search in Google Scholar

Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging

Journal article published in 2007 by Enrico Kaden, Thomas R. Knösche, Alfred Anwander ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The human brain forms a complex neural network with a connectional architecture that is still far from being known in full detail, even at the macroscopic level. The advent of diffusion MR imaging has enabled the exploration of the structural properties of white matter in vivo. In this article we propose a new forward model that maps the microscopic geometry of nervous tissue onto the water diffusion process and further onto the measured MR signals. Our spherical deconvolution approach completely parameterizes the fiber orientation density by a finite mixture of Bingham distributions. In addition, we define the term anatomical connectivity, taking the underlying image modality into account. This neurophysiological metric may represent the proportion of the nerve fibers originating in the source area which intersect a given target region. The specified inverse problem is solved by Bayesian statistics. Posterior probability maps denote the probability that the connectivity value exceeds a chosen threshold, conditional upon the noisy observations. These maps allow us to draw inferences about the structural organization of the cerebral cortex. Moreover, we will demonstrate the proposed approach with diffusion-weighted data sets featuring high angular resolution.