Published in

SAGE Publications, Journal of Cerebral Blood Flow and Metabolism, 9(39), p. 1669-1677, 2018

DOI: 10.1177/0271678x18775215

Links

Tools

Export citation

Search in Google Scholar

Longitudinal MRI dynamics of recent small subcortical infarcts and possible predictors

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We aimed to explore the morphological evolution of recent small subcortical infarcts (RSSIs) over 15 months. Moreover, we hypothesized that quantitative lesion apparent diffusion coefficient (ADC) values and serum neurofilament light (NfL) levels predict subsequent lacunar cavitation. We prospectively studied 78 RSSI patients, who underwent pre-defined follow-up investigations three and 15 months poststroke using 3 T MRI including high-resolution T1 sequences. To identify potential predictors of cavitation, we determined RSSI size and quantitative ADC values, and serum NfL using the SIMOA technique. The majority of RSSIs showed cavitation at three months ( n = 61, 78%) with only minimal changes regarding cavitation status thereafter. The maximum axial lacunar diameter decreased from 8 mm at three to 7 mm at 15 months ( p < 0.05). RSSIs which cavitated had lower lesional ADC values and were associated with higher baseline NfL levels compared to those without cavitation, but did not differ regarding lesion size. In logistic regression analysis, only baseline NfL levels predicted cavitation ( p = 0.017). In this prospective study using predefined high-resolution MRI protocols, the majority of RSSIs evolved into lacunes during the first three months poststroke with not much change thereafter. Serum NfL seems to be a promising biomarker for more advanced subsequent tissue destruction in RSSIs.