Published in

The Oxford Handbook of the Auditory Brainstem

DOI: 10.1093/oxfordhb/9780190849061.013.19

Links

Tools

Export citation

Search in Google Scholar

Deviance Detection and Encoding Acoustic Regularity in the Auditory Midbrain

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
White circle
Published version: policy unclear
Data provided by SHERPA/RoMEO

Abstract

In the past, there was a rather corticocentric conception of the processing of relationships between sounds that used to mostly relegate the midbrain function to a mere relay. However, increasing neurophysiological evidence demonstrates that the midbrain is, in fact, playing a crucial role in encoding some sorts of regularities present in the flow of acoustic stimulation, adapting the neuronal response for processing efficiency. Midbrain neurons are capable of responding more rapidly and strongly when a new stimulus is not matching to a previously encoded regularity; a phenomenon referred to as deviance detection. This chapter discusses deviance detection evidence in the midbrain, mainly describing the characteristics and mechanisms of stimulus-specific adaptation (SSA), and closing with an interpretation from the standpoint of the predictive coding theory.