Dissemin is shutting down on January 1st, 2025

Published in

Springer (part of Springer Nature), Molecular Biology Reports, 1(40), p. 383-390

DOI: 10.1007/s11033-012-2072-3

Links

Tools

Export citation

Search in Google Scholar

Vitamin D receptor gene polymorphisms, bone mineral density and fractures in postmenopausal women with osteoporosis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The goal of the study was to investigate the possibility of an association between polymorphisms and single alleles of BsmI, ApaI, TaqI of the vitamin D receptor (VDR) gene with bone mineral density (BMD) and prevalence of vertebral/non-vertebral fractures in a group of postmenopausal Polish women with osteoporosis. The study group comprised of 501 postmenopausal females with osteoporosis (mean age 66.4 ± 8.9), who were diagnosed on the basis of either the WHO criteria or self-reported history of low-energy fractures. The three polymorphisms were determined by PCR (polymerase chain reaction) and RFLP (restriction fragment length polymorphism). BMD at the lumbar spine and femoral neck was assessed by dual energy X-ray absorptiometry (DXA). 285 fractures were reported in the whole group (168 vertebral and 117 non-vertebral). Incidence of non-vertebral fractures was significantly higher in the carriers of single alleles a of ApaI, b of BsmI and T of TaqI VDR gene polymorphisms (p = 0.021, 0.032, 0.020, respectively). No significant associations between allelic variants of the studied polymorphisms and BMD or fracture incidence were found. (1).The presence of single alleles a,b and T of ApaI, BsmI, TaqI VDR gene polymorphisms respectively, might serve as an indicator of non-vertebral fractures. (2). Lack of association between the VDR gene polymorphisms and BMD suggests that VDR contributes to low-energy fractures also through other ways.