Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-17107-5

Links

Tools

Export citation

Search in Google Scholar

From Discovery to Translation: Characterization of C-Mannosyltryptophan and Pseudouridine as Markers of Kidney Function

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractUsing a non-targeted metabolomics platform, we recently identified C-mannosyltryptophan and pseudouridine as non-traditional kidney function markers. The aims of this study were to obtain absolute concentrations of both metabolites in blood and urine from individuals with and without CKD to provide reference ranges and to assess their fractional excretions (FE), and to assess the agreement with their non-targeted counterparts. In individuals without/with CKD, mean plasma and urine concentrations for C-mannosyltryptophan were 0.26/0.72 µmol/L and 3.39/4.30 µmol/mmol creatinine, respectively. The respective concentrations for pseudouridine were 2.89/5.67 µmol/L and 39.7/33.9 µmol/mmol creatinine. Median (25th, 75th percentiles) FEs were 70.8% (65.6%, 77.8%) for C-mannosyltryptophan and 76.0% (68.6%, 82.4%) for pseudouridine, indicating partial net reabsorption. Association analyses validated reported associations between single metabolites and eGFR. Targeted measurements of both metabolites agreed well with the non-targeted measurements, especially in urine. Agreement for composite nephrological measures FE and urinary metabolite-to-creatinine ratio was lower, but could be improved by replacing non-targeted creatinine measurements with a standard clinical creatinine test. In summary, targeted quantification and additional characterization in relevant populations are necessary steps in the translation of non-traditional biomarkers in nephrology from non-targeted discovery to clinical application.