Published in

European Geosciences Union, Earth System Dynamics, 1(10), p. 171-187, 2019

DOI: 10.5194/esd-10-171-2019

European Geosciences Union, Earth System Dynamics Discussions, p. 1-27

DOI: 10.5194/esd-2017-70

Links

Tools

Export citation

Search in Google Scholar

Development and prospects of the regional MiKlip decadal prediction system over Europe: Predictive skill, added value of regionalization and ensemble size dependency

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. The current state of development and the prospects of the regional MiKlip decadal prediction system for Europe are analysed. The MiKlip regional system consists of two 10-member hindcast ensembles computed with the global coupled model MPI-ESM-LR downscaled for the European region with COSMO-CLM to a horizontal resolution of 0.22∘ (∼25 km). Prediction skills are computed for temperature, precipitation, and wind speed using E-OBS and an ERA-Interim-driven COSMO-CLM simulation as verification datasets. Focus is given to the eight European PRUDENCE regions and to lead years 1–5 after initialization. Evidence of the general potential for regional decadal predictability for all three variables is provided. For example, the initialized hindcasts outperform the uninitialized historical runs for some key regions in Europe, particularly in southern Europe. However, forecast skill is not detected in all cases, but it depends on the variable, the region, and the hindcast generation. A comparison of the downscaled hindcasts with the global MPI-ESM-LR runs reveals that the MiKlip prediction system may distinctly benefit from regionalization, in particular for parts of southern Europe and for Scandinavia. The forecast accuracy of the MiKlip ensemble is systematically enhanced when the ensemble size is increased stepwise, and 10 members is found to be suitable for decadal predictions. This result is valid for all variables and European regions in both the global and regional MiKlip ensemble. The present results are encouraging for the development of a regional decadal prediction system.