Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-10629-y

Links

Tools

Export citation

Search in Google Scholar

Pregnancy-Associated Plasma Protein-A2 and Anthropometry, Lifestyle, and Biochemical Factors in a Human Adult Population

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractPregnancy-associated plasma protein-A2 (PAPP-A2), a metalloproteinase purportedly related to pregnancy, foetal growth and development, has recently been described essential for pre-adult growth. Thus, we measured PAPP-A2 in plasma of a non-pregnant population and determined its associations with lifestyle, anthropometric or biochemical factors. In this cross-sectional study of 387 participants (20–70 years) randomly drawn from registration offices near Berlin, Germany, socio-economic and lifestyle factors were assessed by questionnaires, and anthropometric measures and blood samples were taken by trained personnel. Blood was analysed for standard clinical parameters. PAPP-A2 concentration was measured by ELISA. Generalized linear models were used to estimate associations with anthropometric and biochemical factors adjusted for age, sex, and weight. Adjusted mean PAPP-A2 concentration was slightly higher in women (283 pg/mL) than in men (261 pg/mL, p = 0.05) and positively correlated with age (r = 0.17, p = 0.001). PAPP-A2 concentration was inversely associated with body mass index (−2.7 pg/mL per kg/m2, p = 0.03) and weight (−1.0 pg/mL per kg, p = 0.01) and positively associated with γ-glutamyl transferase (13.6 pg/mL per SD, p = 0.02), aspartate transaminase (18.5 pg/mL per SD, p = 0.002) and lactate dehydrogenase (14.9 pg/mL per SD, p = 0.02). Our results support that PAPP-A2, beyond its established role in early growth and development is relevant in adult metabolisms.