Published in

Karger Publishers, Transfusion Medicine and Hemotherapy, 3(41), p. 189-196, 2014

DOI: 10.1159/000363523

Links

Tools

Export citation

Search in Google Scholar

Hemostatic Function and Transfusion Efficacy of Apheresis Platelet Concentrates Treated with Gamma Irradiation in Use for Thrombocytopenic Patients

Journal article published in 2014 by Mei Zhu, Wei Xu, Bao-Long Wang, Hong Su
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

<b><i>Background: </i></b>During the transfusion of blood components, the transfer of allogeneic donor white blood cells (WBCs) can mediate transfusion-associated graft-versus-host disease (TA-GVHD). To minimize the reaction, exposure of blood products to gamma irradiation is currently the standard of care. The aim of our study was to evaluate and compare hemostatic function, transfusion efficacy, and safety of gamma-irradiated single-donor apheresis platelet concentrates (PCs) and of conventional non-irradiated PCs in patients with chemotherapy-induced thrombocytopenia. <b><i>Methods: </i></b>20 double-dose single-donor leukoreduced PCs were split in two identical units; one was gamma-irradiated with 25 Gy (study arm A) and the other remains non-irradiated (study arm B). Both units were stored under equal conditions. Hematologic patients were randomly assigned to receive gamma-irradiated or conventional non-irradiated PCs. Hemostatic function was evaluated by thrombelastography (TEG). TEG measurements were taken pre transfusion and 1 and 24 h post transfusion. TEG profiles were measured, noting the time to initiate clotting (R), the angle of clot formation (α), and the maximum amplitude (clot strength (MA)). Whole blood samples were collected from these thrombocytopenic patients at 1 and 24 h for PLT count increments (CIs) and corrected count increments (CCIs) with assessments of transfusion efficacy. Time to next PLT transfusion, transfusion requirement of RBCs, active bleeding, and adverse events (AEs), were analyzed. <b><i>Results: </i></b>No differences could be found in hemostatic function parameters (MA, R, and α) between study arms A and B (all p values > 0.096) pre transfusion as well as 1 and 24 h post transfusion. No differences between study arms A and B were observed for mean (± standard deviation (SD)) 1-hour CCI (12.83 ± 6.33 vs. 11.59 ± 5.97) and 24-hour CCI (6.56 ± 4.10 vs. 5.76 ± 4.05). Mean 1-hour CI and 24-hour CI were not significantly different in both study arms (p = 0.254 and p = 0.242 respectively). Median time to the next PC transfusion after study PC was not significantly different between groups: (2.4 vs. 2.2 days, p = 0.767). No differences could be found in transfusion requirement of red blood cells (p = 0.744) between both study arms. There were also no regarding bleeding, adverse events, and acute transfusion reaction(s). <b><i>Conclusions: </i></b>This study confirms safety of gamma-irradiated PCs for treatment thrombocytopenia. Hemostatic function, transfusion efficacy, bleeding, and safety of single-donor apheresis PCs treated with gamma irradiation versus untreated control PCs are comparable.