Published in

Nature Research, Nature Structural and Molecular Biology, 11(19), p. 1116-1123, 2012

DOI: 10.1038/nsmb.2412

Links

Tools

Export citation

Search in Google Scholar

APC15 mediates CDC20 autoubiquitylation by APC/CMCC and disassembly of the mitotic checkpoint complex

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The anaphase-promoting complex/cyclosome (APC/C) bound to CDC20 (APC/C(CDC20)) initiates anaphase by ubiquitylating B-type cyclins and securin. During chromosome bi-orientation, CDC20 assembles with MAD2, BUBR1 and BUB3 into a mitotic checkpoint complex (MCC) that inhibits substrate recruitment to the APC/C. APC/C activation depends on MCC disassembly, which was proposed to require CDC20 autoubiquitylation. Here we characterize APC15, a human APC/C subunit related to yeast Mnd2. APC15 is located near APC/C's MCC binding site; it is required for APC/C-bound MCC (APC/C(MCC))-dependent CDC20 autoubiquitylation and degradation and for timely anaphase initiation but is dispensable for substrate ubiquitylation by APC/C(CDC20) and APC/C(CDH1). Our results support the model wherein MCC is continuously assembled and disassembled to enable rapid activation of APC/C(CDC20) and CDC20 autoubiquitylation promotes MCC disassembly. We propose that APC15 and Mnd2 negatively regulate APC/C coactivators and report generation of recombinant human APC/C.