Published in

Nature Research, Scientific Reports, 1(6), 2016

DOI: 10.1038/srep29559

Links

Tools

Export citation

Search in Google Scholar

Impact of ABCB1 1236C > T-2677G > T-3435C > T polymorphisms on the anti-proliferative activity of imatinib, nilotinib, dasatinib and ponatinib

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractOverexpression of ABCB1 (also called P-glycoprotein) confers resistance to multiple anticancer drugs, including tyrosine kinase inhibitors (TKIs). Several ABCB1 single nucleotide polymorphisms affect the transporter activity. The most common ABCB1 variants are 1236C > T, 2677G > T, 3435C > T and have been associated with clinical response to imatinib in chronic myelogenous leukaemia (CML) in some studies. We evaluated the impact of these polymorphisms on the anti-proliferative effect and the intracellular accumulation of TKIs (imatinib, nilotinib, dasatinib and ponatinib) in transfected HEK293 and K562 cells. ABCB1 overexpression increased the resistance of cells to doxorubicin, vinblastine and TKIs. Imatinib anti-proliferative effect and accumulation were decreased to a larger extent in cells expressing the ABCB1 wild-type protein compared with the 1236T-2677T-3435T variant relatively to control cells. By contrast, ABCB1 polymorphisms influenced the activity of nilotinib, dasatinib and ponatinib to a much lesser extent. In conclusion, our data suggest that wild-type ABCB1 exports imatinib more efficiently than the 1236T-2677T-3435T variant protein, providing a molecular basis for the reported association between ABCB1 polymorphisms and the response to imatinib in CML. Our results also point to a weaker impact of ABCB1 polymorphisms on the activity of nilotinib, dasatinib and ponatinib.