Published in

Elsevier, Composites Science and Technology, 13(67), p. 2728-2738

DOI: 10.1016/j.compscitech.2007.02.006

Links

Tools

Export citation

Search in Google Scholar

Durability and mechanical properties of silane cross-linked wood thermoplastic composites

Journal article published in 2007 by Magnus Bengtsson, Nicole M. Stark, Kristiina Oksman ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this study, silane cross-linked wood-polyethylene composite profiles were manufactured by reactive extrusion. These composites were evaluated regarding their durability and mechanical properties in comparison with two non-cross-linked wood-polyethylene composites. An addition of only 2% w/w of silane solution during manufacturing was enough to achieve almost 60% degree of cross-linking after curing. The cross-linked composites showed flexural toughness superior to the non-cross-linked composites. The cross-linked composites also absorbed less moisture during a boiling test in water and this was an indirect evidence of improved interfacial adhesion. After accelerated weathering for 1000-3000 h the general trend was a decrease in flexural modulus and strength of both the non-cross-linked and cross-linked composites. The decrease in modulus seemed to be lower for the cross-linked composites while the decrease in strength seemed to be higher compared to the non-cross-linked composites. Weathering also resulted in a considerable colour fading of the composites. Water absorption-freeze-thaw cycling decreased the flexural modulus of non-cross-linked composites considerably while there was no statistical decrease in modulus for the cross-linked composites. There was only an insignificant decrease in strength for the composites after the water absorption-freeze-thaw cycling. ; In this study, silane cross-linked wood-polyethylene composite profiles were manufactured by reactive extrusion. These composites were evaluated regarding their durability and mechanical properties in comparison with two non-cross-linked wood-polyethylene composites. An addition of only 2% w/w of silane solution during manufacturing was enough to achieve almost 60% degree of cross-linking after curing. The cross-linked composites showed flexural toughness superior to the non-cross-linked composites. The cross-linked composites also absorbed less moisture during a boiling test in water and this was an indirect evidence of improved interfacial adhesion. After accelerated weathering for 1000-3000 h the general trend was a decrease in flexural modulus and strength of both the non-cross-linked and cross-linked composites. The decrease in modulus seemed to be lower for the cross-linked composites while the decrease in strength seemed to be higher compared to the non-cross-linked composites. Weathering also resulted in a considerable colour fading of the composites. Water absorption-freeze-thaw cycling decreased the flexural modulus of non-cross-linked composites considerably while there was no statistical decrease in modulus for the cross-linked composites. There was only an insignificant decrease in strength for the composites after the water absorption-freeze-thaw cycling.