Published in

European Geosciences Union, The Cryosphere, 2(11), p. 693-705, 2017

DOI: 10.5194/tc-11-693-2017

Links

Tools

Export citation

Search in Google Scholar

Bromine, iodine and sodium in surface snow along the 2013 Talos Dome–GV7 traverse (northern Victoria Land, East Antarctica)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. Halogen chemistry in the polar regions occurs through the release of halogen elements from different sources. Bromine is primarily emitted from sea salt aerosols and other saline condensed phases associated with sea ice surfaces, while iodine is affected by the release of organic compounds from algae colonies living within the sea ice environment. Measurements of halogen species in polar snow samples are limited to a few sites although there is some evidence that they are related to sea ice extent. We examine here total bromine, iodine and sodium concentrations in a series of 2 m cores collected during a traverse from Talos Dome (72°48' S, 159°06' E) to GV7 (70°41' S, 158°51' E) analyzed by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) at a resolution of 5 cm. We find a distinct seasonality of the bromine enrichment signal in most of the cores, with maxima during the austral spring. Iodine shows average concentrations of 0.04 ppb with little variability. No distinct seasonality is found for iodine and sodium. The transect reveals homogeneous air-to-snow fluxes for the three chemical species along the transect due to competing effects of air masses originating from the Ross Sea and the Southern Ocean.