Published in

Oxford University Press, Plant Physiology, 3(154), p. 1088-1095, 2010

DOI: 10.1104/pp.110.162396

Links

Tools

Export citation

Search in Google Scholar

The Dynamics of Embolism Repair in Xylem: In Vivo Visualizations Using High-Resolution Computed Tomography

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Water moves through plants under tension and in a thermodynamically metastable state, leaving the nonliving vessels that transport this water vulnerable to blockage by gas embolisms. Failure to reestablish flow in embolized vessels can lead to systemic loss of hydraulic conductivity and ultimately death. Most plants have developed a mechanism to restore vessel functionality by refilling embolized vessels, but the details of this process in vessel networks under tension have remained unclear for decades. Here we present, to our knowledge, the first in vivo visualization and quantification of the refilling process for any species using high-resolution x-ray computed tomography. Successful vessel refilling in grapevine (Vitis vinifera) was dependent on water influx from surrounding living tissue at a rate of 6 × 10−4 μm s−1, with individual droplets expanding over time, filling vessels, and forcing the dissolution of entrapped gas. Both filling and draining processes could be observed in the same vessel, indicating that successful refilling requires hydraulic isolation from tensions that would otherwise prevent embolism repair. Our study demonstrates that despite the presence of tensions in the bulk xylem, plants are able to restore hydraulic conductivity in the xylem.