Published in

World Scientific Publishing, Journal of Porphyrins and Phthalocyanines, 01n04(20), p. 388-396, 2016

DOI: 10.1142/s1088424616500176

Links

Tools

Export citation

Search in Google Scholar

Zn-complex of a natural yellow chlorophyll catabolite

Journal article published in 2016 by Chengjie Li ORCID, Bernhard Kräutler
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

“Non-fluorescent” chlorophyll catabolites (NCCs) were named “rusty pigments” originally, as they easily oxidized to yellow chlorophyll catabolites (YCCs) and other colored natural “phyllobilins.” In the present work, binding of Zn(II)-ions by YCC and its methyl ester YCC-Me, and structural investigations of the resulting Zn(II)-complexes are reported. Binding of Zn-ions to the weakly luminescent YCC or YCC-Me in DMSO produces orange-yellow complexes that exhibit strong green emission. The Zn-complex of YCC-Me was isolated and characterized by UV-vis-, fluorescence-, mass- and NMR-spectra. The data revealed a 2:1 complex, Zn(YCC-Me)[Formula: see text], in which YCC-Me serves as bidentate ligand. The Zn(II)-center in Zn(YCC-Me)[Formula: see text] is, thereby, deduced to be coordinated in a pseudo tetrahedral fashion. Formation of Zn(YCC-Me)[Formula: see text] (and of Zn(YCC)[Formula: see text] is compatible with an isomerization of the lactam form of ring D to the corresponding lactim tautomer in these neutral Zn(II)-complexes.