Published in

Nature Research, Nature Communications, 1(8), 2017

DOI: 10.1038/ncomms14185

Links

Tools

Export citation

Search in Google Scholar

A metamorphic inorganic framework that can be switched between eight single-crystalline states

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe design of highly flexible framework materials requires organic linkers, whereas inorganic materials are more robust but inflexible. Here, by using linkable inorganic rings made up of tungsten oxide (P8W48O184) building blocks, we synthesized an inorganic single crystal material that can undergo at least eight different crystal-to-crystal transformations, with gigantic crystal volume contraction and expansion changes ranging from −2,170 to +1,720 Å3 with no reduction in crystallinity. Not only does this material undergo the largest single crystal-to-single crystal volume transformation thus far reported (to the best of our knowledge), the system also shows conformational flexibility while maintaining robustness over several cycles in the reversible uptake and release of guest molecules switching the crystal between different metamorphic states. This material combines the robustness of inorganic materials with the flexibility of organic frameworks, thereby challenging the notion that flexible materials with robustness are mutually exclusive.