Published in

Springer, Functional and Integrative Genomics, 6(16), p. 693-704, 2016

DOI: 10.1007/s10142-016-0518-8

Links

Tools

Export citation

Search in Google Scholar

Genomic analyses identify agents regulating somatotroph and lactotroph functions

Journal article published in 2016 by Jun Fan, Cui Zhang, Qi Chen, Jin Zhou, Jean-Louis Franc, Qing Chen, Yunguang Tong
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Isolated hormone deficiency might be caused by loss of a specific type of endocrine cells, and regenerating these missing cells may provide a new option for future treatment. It is known that POU1F1 lineage cells can differentiate into thyrotroph, somatotroph, and lactotroph. However, there is no effective way of controlling pituitary stem/progenitor cells to differentiate into a specific type of endocrine cell. We thereby analyzed multiple genomic publications related to POU1F1 and pituitary development in this study to identify genes and agents regulating POU1F1 lineage cell differentiation. ANOVA analyses were performed to obtain differentially expressed genes. Ingenuity pathway analyses were performed to obtain signaling pathways, interaction networks, and upstream regulators. Venn diagram was used to determine the overlapping information between studies. Summary statistics was performed to rank genes according to their frequency of occurrence in these studies. The results from upstream analyses indicated that 326 agents may regulate pituitary cell differentiation. These agents can be categorized into 12 groups, including hormones and related pathways, PKA-cAMP pathways, p53/DNA damaging/cell cycle pathways, immune/inflammation regulators, growth factor and downstream pathways, retinoic/RAR pathways, ROS pathways, histone modifications, CCAAT/enhancer binding protein family, neuron development/degeneration pathways, calcium related and fat acid, and glucose pathways. Additional experiments demonstrated that H2O2 and catalase differentially regulate growth hormone and prolactin expression in somatolactotroph cells, confirming potential roles of ROS pathway on regulating somatotroph and lactotroph functions.