Published in

Wiley, Advanced Energy Materials, 24(6), p. 1601372, 2016

DOI: 10.1002/aenm.201601372

Links

Tools

Export citation

Search in Google Scholar

MXene-on-Paper Coplanar Microsupercapacitors

Journal article published in 2016 by Narendra Kurra ORCID, Bilal Ahmed, Yury Gogotsi, Husam N. Alshareef ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A simple and scalable direct laser machining process to fabricate MXene-on-paper coplanar microsupercapacitors is reported. Commercially available printing paper is employed as a platform in order to coat either hydrofluoric acid-etched or clay-like 2D Ti3C2 MXene sheets, followed by laser machining to fabricate thick-film MXene coplanar electrodes over a large area. The size, morphology, and conductivity of the 2D MXene sheets are found to strongly affect the electrochemical performance due to the efficiency of the ion-electron kinetics within the layered MXene sheets. The areal performance metrics of Ti3C2 MXene-on-paper microsupercapacitors show very competitive power-energy densities, comparable to the reported state-of-the-art paper-based microsupercapacitors. Various device architectures are fabricated using the MXene-on-paper electrodes and successfully demonstrated as a micropower source for light emitting diodes. The MXene-on-paper electrodes show promise for flexible on-paper energy storage devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.