Published in

American Chemical Society, Langmuir, 4(33), p. 927-935, 2017

DOI: 10.1021/acs.langmuir.6b03970

Links

Tools

Export citation

Search in Google Scholar

Unique Combination of Surface Energy and Lewis Acid–Base Characteristics of Superhydrophobic Cellulose Fibers

Journal article published in 2016 by J. A. F. Gamelas ORCID, A. Salvador, J. Hidalgo, P. J. Ferreira ORCID, A. Tejado
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Cellulose fibers were first functionalized on their surface by silanization with trichloromethylsilane in an optimized gas-solid reaction, and the occurrence of the reaction was assessed using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Then, the changes in the physicochemical surface properties of the material were thoroughly assessed using inverse gas chromatography (IGC) and X-ray photoelectron spectroscopy as surface specific tools. A very surprising combination of results was obtained: (i) the dispersive component of the surface energy was found to decrease from 42 to 14 mJ m(-2) (at 40 °C), the latter figure representing one of the lowest values ever reported (by IGC) for cellulose-based materials, and (ii) both Lewis acidic and Lewis basic characters of the fiber surface, as measured by the injection into the IGC columns of 15 different vapor probes, significantly increased with silanization. Moreover, those remarkable changes in the surface properties of the material were obtained at a low degree of silanization (as shown by ATR-FTIR). The present results may have a great impact in what concerns the application of the described type of superhydrophobic cellulose fibers for the production of new biocomposites: an unusual enhanced compatibility both with low-surface energy polymeric matrices, such as polyolefins, as well as with other types of matrices through Lewis acid-base interactions, can be predicted.