Published in

American Chemical Society, Inorganic Chemistry, 8(52), p. 4160-4172, 2013

DOI: 10.1021/ic300672g

Links

Tools

Export citation

Search in Google Scholar

Kinetics and thermodynamics of small molecule binding to pincer-PCP rhodium(I) complexes

This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The kinetics and thermodynamics of the binding of several small molecules, L (L = N2, H2, D2, and C2H 4), to the coordinatively unsaturated pincer-PCP rhodium(I) complexes Rh[tBu2PCH2(C6H3)CH 2PtBu2] (1) and Rh[tBu 2P(CH2)2(CH)(CH2)2P tBu2] (2) in organic solvents (n-heptane, toluene, THF, and cyclohexane-d12) have been investigated by a combination of kinetic flash photolysis methods, NMR equilibrium studies, and density functional theory (DFT) calculations. Using various gas mixtures and monitoring by NMR until equilibrium was established, the relative free energies of binding of N2, H2, and C2H4 in cyclohexane-d12 were found to increase in the order C 2H4