Published in

American Chemical Society, Nano Letters, 3(15), p. 1684-1690, 2015

DOI: 10.1021/nl5043165

Links

Tools

Export citation

Search in Google Scholar

Carrier Transport in High Mobility InAs Nanowire Junctionless Transistors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Ability to understand and model the performance limits of nanowire transistors is the key to design of next generation devices. Here, we report studies on high-mobility junction-less gate-all-around nanowire field effect transistor with carrier mobility reaching 2000 cm2/V.s at room temperature. Temperature-dependent transport measurements reveal activated transport at low temperatures due to surface donors, while at room temperature the transport shows a diffusive behavior. From the conductivity data, the extracted value of sound velocity in InAs nanowires is found to be an order less than the bulk. This low sound velocity is attributed to the extended crystal defects that ubiquitously appear in these nanowires. Analyzing the temperature-dependent mobility data, we identify the key scattering mechanisms limiting the carrier transport in these nanowires. Finally, using these scattering models, we perform drift-diffusion based transport simulations of a nanowire field-effect transistor and compare the device performances with experimental measurements. Our device modeling provides insight into performance limits of InAs nanowire transistors and can be used as a predictive methodology for nanowire-based integrated circuits. ; Comment: 22 pages, 5 Figures, Nano Letters