Published in

American Chemical Society, ACS Applied Materials and Interfaces, 6(8), p. 4101-4108, 2016

DOI: 10.1021/acsami.5b11731

Links

Tools

Export citation

Search in Google Scholar

Monolayer Doping of Si with Improved Oxidation Resistance

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this article, the functionalization of planar silicon with arsenic- and phosphorus-based azides was investigated. Covalently bonded and well-ordered alkyne-terminated monolayers were prepared from a range of commercially available dialkyne precursors using a well-known thermal hydrosilylation mechanism to form an acetylene-terminated monolayer. The terminal acetylene moieties were further functionalized through the application of copper-catalyzed azide–alkyne cycloaddition (CuAAC) reactions between dopant-containing azides and the terminal acetylene groups. The introduction of dopant molecules via this method does not require harsh conditions typically employed in traditional monolayer doping approaches, enabling greater surface coverage with improved resistance toward reoxidation. X-ray photoelectron spectroscopy studies showed successful dialkyne incorporation with minimal Si surface oxidation, and monitoring of the C 1s and N 1s core-level spectra showed successful azide–alkyne cycloaddition. Electrochemical capacitance–voltage measurements showed effective diffusion of the activated dopant atoms into the Si substrates.