Published in

Elsevier, Earth and Planetary Science Letters, (462), p. 122-131, 2017

DOI: 10.1016/j.epsl.2016.12.028

Links

Tools

Export citation

Search in Google Scholar

Hunting for the Tristan Mantle Plume - An upper mantle tomography around the volcanic island of Tristan da Cunha

Journal article published in 2017 by Antje Schlömer, Wolfram H. Geissler, Wilfried Jokat ORCID, Marion Jegen
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The active volcanic island Tristan da Cunha, located at the southwestern and youngest end of the Walvis Ridge - Tristan/Gough hotspot track, is believed to be the surface expression of a huge thermal mantle anomaly. While several criteria for the diagnosis of a classical hotspot track are met, the Tristan region also shows some peculiarities. Consequently it is vigorously debated if the active volcanism in this region is the expression of a deep mantle plume, or if it is caused by shallow plate tectonics and the interaction with the nearby Mid- Atlantic Ridge. Because of a lack of geophysical data in the study area, no model or assumption has been completely confirmed. We present the first amphibian P-wave finite-frequency travel time tomography of the Tristan da Cunha region, based on cross-correlated travel time residuals of teleseismic earthquakes recorded by 24 ocean-bottom seismometers. The data can be used to image a low velocity structure southwest of the island. The feature is cylindrical with a radius of ~ 100 km down to a depth of 250 km. We relate this structure to the origin of Tristan da Cunha and name it the Tristan conduit. Below 250 km the low velocity structure ramifies into narrow veins, each with a radius of ~ 50 km. Furthermore, we imaged a linkage between young seamounts southeast of Tristan da Cunha and the Tristan conduit.