Published in

Elsevier, Journal of Power Sources, (342), p. 904-912, 2017

DOI: 10.1016/j.jpowsour.2016.12.070

Links

Tools

Export citation

Search in Google Scholar

Microstructural degradation of silicon electrodes during lithiation observed via operando X-ray tomographic imaging

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Due to their high theoretical capacity compared to that of state-of-the-art graphite-based electrodes, silicon electrodes have gained much research focus for use in the development of next generation lithium-ion batteries. However, a major drawback of silicon as an electrode material is that it suffers from particle fracturing due to huge volume expansion during electrochemical cycling, thus limiting commercialization of such electrodes. Understanding the role of material microstructure in electrode degradation will be instrumental in the design of stable silicon electrodes. Here, we demonstrate the application of synchrotron-based X-ray tomographic microscopy to capture and track microstructural evolution, phase transformation and fracturing within a silicon-based electrode during electrochemical lithiation.