Published in

Taylor and Francis Group, The World Journal of Biological Psychiatry, 2(19), p. 80-100, 2017

DOI: 10.1080/15622975.2017.1282175

Links

Tools

Export citation

Search in Google Scholar

Common and specific genes and peripheral biomarkers in children and adults with Attention-Deficit/Hyperactivity Disorder

Journal article published in 2017 by Cristian Bonvicini ORCID, Stephen V. Faraone, Catia Scassellati ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Objectives: Elucidating the biological mechanisms involved in Attention-deficit/hyperactivity disorder (ADHD) has been challenging. Relatively unexplored is the fact that these mechanisms can differ with age. Methods: We present an overview on the major differences between children and adults with ADHD, describing several studies from genomics to metabolomics performed in ADHD children and in adults. A systematic search (up until February, 2016) was conducted. Results: From a PRISMA flow-chart, a total of eligibility 350 studies from genomics and metabolomics were found for cADHD and 91 for aADHD. For children, associations were found for genes belonging to dopaminergic (SLC6A3, DRD4, MAOA) and neurodevelopmental (LPHN3, DIRAS2) systems and OPRM1 (Yates Corrected p = 0.016; OR = 2.27 95%CI:1.15-4.47). Studies of adults have implicated circadian rhythms genes, HTR2A, MAOB and a more generic neurodevelopmental/neurite outgrowth network (BCHE, SNAP25, BAIAP2, NOS1/NO, KCNIP4, SPOCK3; Yates Corrected p = 0.007; OR= 3.30 95%CI:1.33-8.29). In common among cADHD and aADHD, the most significant findings are for oxidative stress proteins (MAD, SOD, PON1, ARES, TOS, TAS, OSI), and, in the second level, DISC1, DBH, DDC, microRNA and adiponectin. Conclusions: Through a convergent functional genomics, this review contributes to clarify which genetic/biological mechanisms differ with age. The effects of some genes do not change throughout lifetime, whereas others are linked to age specific stages. Additional research and further studies are needed to generate firmer conclusions that might someday be useful for predicting the remission and persistence of the disorder. Although the limitations, some of these genes/proteins could be potential useful biomarkers to discriminate cADHD versus aADHD.