Links

Tools

Export citation

Search in Google Scholar

Thermal Optimized Operation of the Single-Phase Full-Bridge PV Inverter under Low Voltage Ride-Through Mode

Journal article published in 2013 by Huai Wang, Yongheng Yang ORCID, Frede Blaabjerg
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

The efficiency of 98% has been reported on transformer-less photovoltaic (PV) inverters and the penetration of grid-connected PV systems is booming as well. In the future, the PV systems are expected to contribute to the grid stability by means of low voltage ride-through operation and grid support. At the same time, the target of a long service time (25 years or more) imposes new challenges to grid-connected transformer-less PV systems. Achieving more reliable PV inverters is of intense interest in recent research. As one of the most critical stresses that induce failures, the thermal stresses on the power devices of a single-phase full-bridge PV inverter are analyzed in different operational modes in this paper. The low voltage grid condition is specially taken into account in this paper. The analysis is demonstrated by a 3 kW single-phase full-bridge grid-connected PV system by simulations. The mean junction temperature and the junction temperature fluctuation of the power devices can be reduced by properly injecting reactive current into the grid under grid faults, and consequently, the overall lifetime of the entire PV system is improved.