Published in

arXiv, 2016

DOI: 10.48550/arxiv.1608.05280

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 1(463), p. 1099-1116

DOI: 10.1093/mnras/stw2079

Links

Tools

Export citation

Search in Google Scholar

The OmegaWhite Survey for short period variable stars II: An overview of results from the first four years

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

OmegaWhite is a wide-field, high cadence, synoptic survey targeting fields in the southern Galactic plane, with the aim of discovering short period variable stars. Our strategy is to take a series of 39 s exposures in the g band of a 1 square degree of sky lasting 2 h using the OmegaCAM wide field imager on the VLT Survey Telescope (VST). We give an overview of the initial 4 years of data which covers 134 square degrees and includes 12.3 million light curves. As the fields overlap with the VLT Survey Telescope Halpha Photometric Survey of the Galactic plane and Bulge (VPHAS+), we currently have $ugriHα$ photometry for ~1/3 of our fields. We find that a significant fraction of the light curves have been affected by the diffraction spikes of bright stars sweeping across stars within a few dozen of pixels over the two hour observing time interval due to the alt-az nature of the VST. We select candidate variable stars using a variety of variability statistics, followed by a manual verification stage. We present samples of several classes of short period variables, including: an ultra compact binary, a DQ white dwarf, a compact object with evidence of a 100 min rotation period, three CVs, one eclipsing binary with an 85 min period, a symbiotic binary which shows evidence of a 31 min photometric period, and a large sample of candidate delta Sct type stars including one with a 9.3 min period. Our overall goal is to cover 400 square degrees, and this study indicates we will find many more interesting short period variable stars as a result.