Published in

Nature Research, Nature Communications, 1(7), 2016

DOI: 10.1038/ncomms12876

Links

Tools

Export citation

Search in Google Scholar

Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Engineering the surface structure at the atomic level can be used to precisely and effectively manipulate the reactivity and durability of catalysts. Here we report tuning of the atomic structure of one-dimensional single-crystal cobalt (II) oxide (CoO) nanorods by creating oxygen vacancies on pyramidal nanofacets. These CoO nanorods exhibit superior catalytic activity and durability towards oxygen reduction/evolution reactions. The combined experimental studies, microscopic and spectroscopic characterization, and density functional theory calculations reveal that the origins of the electrochemical activity of single-crystal CoO nanorods are in the oxygen vacancies that can be readily created on the oxygen-terminated {111} nanofacets, which favourably affect the electronic structure of CoO, assuring a rapid charge transfer and optimal adsorption energies for intermediates of oxygen reduction/evolution reactions. These results show that the surface atomic structure engineering is important for the fabrication of efficient and durable electrocatalysts. ; Tao Ling, Dong-Yang Yan, Yan Jiao, Hui Wang, Yao Zheng, Xueli Zheng, Jing Mao, Xi-Wen Du, Zhenpeng Hu, Mietek Jaroniec, Shi-Zhang Qiao