Published in

16th AIAA Aviation Technology, Integration, and Operations Conference

DOI: 10.2514/6.2016-3758

Links

Tools

Export citation

Search in Google Scholar

Cost-Benefit Assessment of 2D and 3D Climate and Weather Optimized Trajectories

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Climate optimized flight trajectories are considered to be a promising measure to mitigate non-CO2 emissions' environmental impact, which is highly sensitive to locus and time of emission. Within this study, optimal control techniques are applied in order to determine 2D (lateral) and 3D (lateral and vertical) cost-optimized flight trajectories while mitigating their climate impact by minimizing emissions and time in highly climate sensitive regions. Therefore, monetary and 4D-climate cost functions, describing the climate sensitivity in dependency of the emission location, altitude, time and weather situation, are integrated into the optimization algorithm. For both, 2D- and 3D-optimization, the cost-benefit potential (climate impact mitigation vs. rise in operating costs) is investigated for nine North Atlantic routes for eastbound and westbound directions in the presence of winds. The conducted study shows large potential for both measures as the reduction of climate sensitivities often predominates the additional emissions caused by headwinds, additional climb- and descent phases, and off-design altitudes. Flight trajectories optimized within the horizontal plane can reduce the average temperature response (ATR) by approximately 15% for a two percent increase in cash operating costs (COC). This mitigation potential is signifcantly improved by superposition of lateral and vertical optimization. 3D-optimized trajectories which are comparable in costs achieve a 20-35% higher ATR reduction than their 2D-optimized counterparts. Further, they reduce global warming more e�ciently (higher ATR reduction per unit cost increment) and to a higher extent. However, achieving maximum climate impact mitigation is linked with an disproportional rise of cash operating costs in both cases. Therefore, a careful consideration of the required climate impact savings as well as the accepted surcharges is necessary.