Published in

Wiley, Advanced Materials Interfaces, 18(3), p. 1600192, 2016

DOI: 10.1002/admi.201600192

Links

Tools

Export citation

Search in Google Scholar

Multistate Resistive Switching Memory for Synaptic Memory Applications

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Reproducible low bias bipolar resistive switching memory in HfZnOx based memristors is reported. The modification of the concentration of oxygen vacancies in the ternary oxide film, which is facilitated by adding ZnO into HfO2, results in improved memory operation by the ternary oxide compared to the single binary oxides. A controlled multistate memory operation is achieved by controlling current compliance and RESET stop voltages. A high DC cyclic stability up to 400 cycles in the multistate memory performance is observed. Conventional synaptic operation in terms of potentiation, depression plasticity, and Ebbinghaus forgetting process are also studied. The memory mechanism is shown to originate from the migration of the oxygen vacancies and modulation of the interfacial layers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim