Published in

American Institute of Physics, APL Materials, 10(4), p. 104810, 2016

DOI: 10.1063/1.4955400

Links

Tools

Export citation

Search in Google Scholar

Thermoelectric transport in surface- and antimony-doped bismuth telluride nanoplates

Journal article published in 2016 by Michael Thompson Pettes ORCID, Jaehyun Kim, Wei Wu, Karen C. Bustillo, Li Shi ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We report the in-plane thermoelectric properties of suspended (Bi1−xSbx)2Te3 nanoplates with x ranging from 0.07 to 0.95 and thicknesses ranging from 9 to 42 nm. The results presented here reveal a trend of increasing p-type behavior with increasing antimony concentration, and a maximum Seebeck coefficient and thermoelectric figure of merit at x ∼ 0.5. We additionally tuned extrinsic doping of the surface using a tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) coating. The lattice thermal conductivity is found to be below that for undoped ultrathin Bi2Te3 nanoplates of comparable thickness and in the range of 0.2–0.7 W m−1 K−1 at room temperature.