Published in

American Physical Society, Physical Review A, 6(95)

DOI: 10.1103/physreva.95.061805

Links

Tools

Export citation

Search in Google Scholar

Setting a disordered password on a photonic memory

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Encryption is a vital tool of information technology protecting our data in the world with ubiquitous computers. While photons are regarded as ideal information carriers, it is a must to implement such data protection on all-optical storage. However, the intrinsic risk of data breaches in existing schemes of photonic memory was never addressed. We theoretically demonstrate the first protocol using spatially disordered laser fields to encrypt data stored on an optical memory, namely, encrypted photonic memory. Compare with a digital key, a continuous disorder encrypts stored light pulses with a rather long key length against brute-force attacks. To address the broadband storage, we also investigate a novel scheme of disordered echo memory with a high fidelity approaching unity. Our results pave novel ways to encrypt different schemes of photonic memory based on quantum optics and raise the security level of photonic information technology. ; Comment: 5 pages and 4 figures