Published in

Hindawi, BioMed Research International, (2014), p. 1-10, 2014

DOI: 10.1155/2014/189197

Links

Tools

Export citation

Search in Google Scholar

Age Dependent Differences in Collagen Alignment of Glutaraldehyde Fixed Bovine Pericardium

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Bovine pericardium is used for heart valve leaflet replacement where the strength and thinness are critical properties. Pericardium from neonatal animals (4–7 days old) is advantageously thinner and is considered as an alternative to that from adult animals. Here, the structures of adult and neonatal bovine pericardium tissues fixed with glutaraldehyde are characterized by synchrotron-based small angle X-ray scattering (SAXS) and compared with the mechanical properties of these materials. Significant differences are observed between adult and neonatal tissue. The glutaraldehyde fixed neonatal tissue has a higher modulus of elasticity (83.7 MPa) than adult pericardium (33.5 MPa) and a higher normalised ultimate tensile strength (32.9 MPa) than adult pericardium (19.1 MPa). Measured edge on to the tissue, the collagen in neonatal pericardium is significantly more aligned (orientation index (OI) 0.78) than that in adult pericardium (OI 0.62). There is no difference in the fibril diameter between neonatal and adult pericardium. It is shown that high alignment in the plane of the tissue provides the mechanism for the increased strength of the neonatal material. The superior strength of neonatal compared with adult tissue supports the use of neonatal bovine pericardium in heterografts.