Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 49(111), p. 17390-17395, 2014

DOI: 10.1073/pnas.1417276111

Links

Tools

Export citation

Search in Google Scholar

Engineering the shape and structure of materials by fractal cut

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Most materials can be stretched to a small degree, depending on their elastic limits and failure properties. For most materials the maximum elastic dilatation is very small, implying that the macroscopic shapes to which an elastic body can be deformed is severely limited. The present work addresses the simple modification of any material via hierarchical cut patterns to allow for extremely large strains and shape changes and a large range of macroscopic shapes. This is an important step in the development of shape-programmable materials. We provide the mathematical foundation, simulation results, and experimental demonstrations of the concept of fractal cut. This approach effectively broadens the design space for engineered materials for applications ranging from flexible/stretchable devices and photonic materials to bioscaffolds.