Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, p. stw726

DOI: 10.1093/mnras/stw726

Links

Tools

Export citation

Search in Google Scholar

Sussing Merger Trees: Stability and Convergence

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Merger trees are routinely used to follow the growth and merging history of dark matter haloes and subhaloes in simulations of cosmic structure formation. Srisawat et al. (2013) compared a wide range of merger-tree-building codes. Here we test the influence of output strategies and mass resolution on tree-building. We find that, somewhat surprisingly, building the tree from more snapshots does not generally produce more complete trees; instead, it tends to short- en them. Significant improvements are seen for patching schemes which attempt to bridge over occasional dropouts in the underlying halo catalogues or schemes which combine the halo-finding and tree-building steps seamlessly. The adopted output strategy does not affec- t the average number of branches (bushiness) of the resultant merger trees. However, mass resolution has an influence on both main branch length and the bushiness. As the resolution increases, a halo with the same mass can be traced back further in time and will encounter more small progenitors during its evolutionary history. Given these results, we recommend that, for simulations intended as precursors for galaxy formation models where of order 100 or more snapshots are analysed, the tree-building routine should be integrated with the halo finder, or at the very least be able to patch over multiple adjacent snapshots. ; Comment: 16 pages, 14 figures, accepted by MNRAS