Published in

The Electrochemical Society, ECS Transactions, 1(57), p. 2671-2678, 2013

DOI: 10.1149/05701.2671ecst

Links

Tools

Export citation

Search in Google Scholar

Microstructural Analysis of an LSCF Cathode Using In Situ Tomography and Simulation

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Electrode tortuosity factor is a key input parameter in many fuel cell simulations. Three-dimensional microstructural data obtained from in-situ synchrotron X-ray nano-computed tomography is used as the basis for comparing five approaches to quantify the tortuosity factor. Three of these techniques are based on diffusivity simulations and showed strong correlation, but had consistently different absolute values. A random walk method showed a good degree of correlation to the diffusive approaches, but had the largest values overall. Lastly, a calculation that used a mean pore centroid approach showed little correlation to any of the other three methods, but compared well with the conventional Bruggeman correlation. Due to the diffusive nature of the ionic transport in electrodes, the authors would recommend calculating tortuosity factors using a diffusive approach based on the voxels rather than a remeshed volume.