Published in

American Society of Mechanical Engineers, Journal of Applied Mechanics, 4(80), 2013

DOI: 10.1115/1.4024177

Links

Tools

Export citation

Search in Google Scholar

Hierarchical Structure and Properties of Graphene Oxide Papers

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The mechanical properties of graphene oxide papers have attracted significant attention in recent years due to their high stiffness and tough behavior. While the structural feature most commonly characterized is the nanosheet spacing, there is a hierarchical structure, which is likely responsible for the impressive mechanical properties. In this paper, we examine the structure of graphene oxide papers on several length scales using novel techniques to distinguish between lamellae and a newly defined feature, termed “super-lamellae.” The differentiation between these intermediate features provides context to the previously observed mechanical response and fracture surfaces of graphene oxide papers, particularly under uniaxial tension.