Published in

Oxford University Press, Journal of Experimental Botany, 5(64), p. 1317-1332, 2013

DOI: 10.1093/jxb/ert015

Links

Tools

Export citation

Search in Google Scholar

Cessation of photosynthesis in Lotus japonicus leaves leads to reprogramming of nodule metabolism

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Symbiotic nitrogen fixation (SNF) involves global changes in gene expression and metabolite accumulation in both rhizobia and the host plant. In order to study the metabolic changes mediated by leaf–root interaction, photosynthesis was limited in leaves by exposure of plants to darkness, and subsequently gene expression was profiled by real-time reverse transcription–PCR (RT–PCR) and metabolite levels by gas chromatography–mass spectrometry in the nodules of the model legume Lotus japonicus. Photosynthetic carbon deficiency caused by prolonged darkness affected many metabolic processes in L. japonicus nodules. Most of the metabolic genes analysed were down-regulated during the extended dark period. In addition to that, the levels of most metabolites decreased or remained unaltered, although accumulation of amino acids was observed. Reduced glycolysis and carbon fixation resulted in lower organic acid levels, especially of malate, the primary source of carbon for bacteroid metabolism and SNF. The high amino acid concentrations together with a reduction in total protein concentration indicate possible protein degradation in nodules under these conditions. Interestingly, comparisons between amino acid and protein content in various organs indicated systemic changes in response to prolonged darkness between nodulated and non-nodulated plants, rendering the nodule a source organ for both C and N under these conditions.