Published in

IOP Publishing, Environmental Research Letters, 4(7), p. 045705, 2012

DOI: 10.1088/1748-9326/7/4/045705

Links

Tools

Export citation

Search in Google Scholar

500 years of regional forest growth variability and links to climatic extreme events in Europe

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Climatic extreme events strongly affect forest growth and thus significantly influence the inter-annual terrestrial carbon balance. As we are facing an increase in frequency and intensity of climate extremes, extensive empirical archives are required to assess continental scale impacts of temperature and precipitation anomalies. Here we divide a tree-ring network of approximately 1000 sites into fifteen groups of similar high-frequency growth variability to reconstruct regional positive and negative extreme events in different parts of Europe between 1500 and 2008. Synchronized growth maxima or minima within and among regions indicate eighteen years in the pre-instrumental period and two events in the 20th century (1948, 1976) with extensive radial growth fluctuations. Comparisons with instrumental data showed that the European tree-ring network mirrors the spatial extent of temperature and precipitation extremes, but the interpretation of pre-instrumental events is challenged by lagged responses to off-growing season climate extremes. We were able to attribute growth minima in subsequent years to unfavourable August-October conditions and to mild climate during winter months associated with respiratory carbon losses. Our results emphasize the importance of carry-over effects and species-specific growth characteristics for forest productivity. Furthermore, they promote the use of regional tree-ring chronologies in research related to climate variability and terrestrial carbon sink dynamics.