Published in

Materials Research Society, Materials Research Society Symposium Proceedings, (1720), 2014

DOI: 10.1557/opl.2014.954

Links

Tools

Export citation

Search in Google Scholar

Electro-Optical Detection of Single Nanoparticles on a Nanopore-Optofluidic Chip

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTA solid-state nanopore was integrated into an optofluidic sensor chip, liquid-core anti-resonant reflecting optical waveguide (ARROW). The solid-state nanopore worked as a smart gate, which simultaneously provided characteristic electrical signals and controlled the entry of single nanoparticles into the liquid-core channel. The subsequent fluorescence detection further identified the nanoparticles by providing optical signals within a specific wavelength range. In this work, correlated electrical and optical detection of single nanoparticles, H1N1 viruses, and λ-DNA molecules was demonstrated. Different types of particles in a mixture were successfully discriminated. Moreover, the flow velocity in the liquid-core channel was extracted with the help of combined analysis of electrical and optical signals. Enhanced electrical sensitivity using a solid-state nanopore with a thin limiting aperture sculpted by SiO2 deposition was also shown.