Published in

Schweizerische Chemische Gesellschaft, CHIMIA, 11(69), p. 652, 2015

DOI: 10.2533/chimia.2015.652

Links

Tools

Export citation

Search in Google Scholar

Resolving the Magnetic Asymmetry of the Inner Space in Self-assembled Dimeric Capsules Based on Tetraurea-calix[4]pyrrole Components

Journal article published in 2015 by Mónica Espelt, Gemma Aragay ORCID, Pablo Ballester ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The encapsulation of N,N, N',N'-tetramethyl-1,5-pentanediamine-N,N'-dioxide 2 in a non-chiral capsular assembly formed by dimerization of tetraurea-calix[4]pyrrole 1a produced the observation of the N-methyl groups of the encapsulated guest as two separated singlets resonating highly upfield in the 1H NMR spectrum. In order to clarify the origin of the observed signal splitting we assembled and studied a series of structurally related dimeric capsules. We used the tetraurea-calix[4]pyrrole 1a , the enantiomerically pure tetraurea-calix[4] pyrrole R-1b and the tetraurea-bisloop calix[4]pyrrole 1c as components of the produced assemblies. The 1H NMR spectra of the assembled encapsulation complexes with bis-N-oxide 2 evidenced diverse splitting patterns of the N-methyl groups. In addition, 2D EXSY/ROESY NMR experiments revealed the existence of chemical exchange processes involving the separated methyl signals of the encapsulated guest. The capsular assemblies were mainly stabilized by a belt of eight head-to-tail hydrogen-bonded urea groups. The interconversion between the two senses of rotation of the unidirectionally oriented urea groups was slow on the 1H NMR timescale. These characteristics determined the appearance of a new asymmetry element (supramolecular conformational chirality) in the assemblies that accounted for some of the magnetic asymmetries featured by the capsule's inner space. The racemization of the supramolecular chirality element was fast on the EXSY timescale and produced the chemical exchange processes detected for the encapsulation complexes.