Published in

Nature Research, Scientific Reports, 1(5), 2015

DOI: 10.1038/srep08452

Links

Tools

Export citation

Search in Google Scholar

Gate Tunable Relativistic Mass and Berry's phase in Topological Insulator Nanoribbon Field Effect Devices

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractTransport due to spin-helical massless Dirac fermion surface state is of paramount importance to realize various new physical phenomena in topological insulators, ranging from quantum anomalous Hall effect to Majorana fermions. However, one of the most important hallmarks of topological surface states, the Dirac linear band dispersion, has been difficult to reveal directly in transport measurements. Here we report experiments on Bi2Te3 nanoribbon ambipolar field effect devices on high-κ SrTiO3 substrates, where we achieve a gate-tuned bulk metal-insulator transition and the topological transport regime with substantial surface state conduction. In this regime, we report two unambiguous transport evidences for gate-tunable Dirac fermions through π Berry's phase in Shubnikov-de Haas oscillations and effective mass proportional to the Fermi momentum, indicating linear energy-momentum dispersion. We also measure a gate-tunable weak anti-localization (WAL) with 2 coherent conduction channels (indicating 2 decoupled surfaces) near the charge neutrality point and a transition to weak localization (indicating a collapse of the Berry's phase) when the Fermi energy approaches the bulk conduction band. The gate-tunable Dirac fermion topological surface states pave the way towards a variety of topological electronic devices.