Published in

American Chemical Society, Journal of the American Chemical Society, 46(134), p. 19017-19025, 2012

DOI: 10.1021/ja306035v

Links

Tools

Export citation

Search in Google Scholar

Affinity-Based Probes Based on Type II Kinase Inhibitors

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Protein kinases are key components of most mammalian signal transduction networks and are therapeutically relevant drug targets. Efforts to study protein kinase function would benefit from new technologies that are able to profile kinases in complex proteomes. Here, we describe active site-directed probes for profiling kinases in whole cell extracts and live cells. These probes contain general ligands that stabilize a specific inactive conformation of the ATP-binding sites of protein kinases, as well as trifluoromethylphenyl diazirine and alkyne moieties that allow covalent modification and enrichment of kinases, respectively. A diverse group of serine/threonine and tyrosine kinases were identified as specific targets of these probes in whole cell extracts. In addition, a number of kinase targets were selectively labeled in live cells. Our chemical proteomics approach should be valuable for interrogating protein kinase active sites in physiologically relevant environments.