Published in

American Physiological Society, Journal of Applied Physiology, 1(118), p. 29-35, 2015

DOI: 10.1152/japplphysiol.00061.2014

Links

Tools

Export citation

Search in Google Scholar

Effects of an artificial gravity countermeasure on orthostatic tolerance, blood volumes and aerobic power after short-term bed rest (BR-AG1)

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Exposure to artificial gravity (AG) in a short-arm centrifuge has potential benefits for maintaining human performance during long-term space missions. Eleven subjects were investigated during three campaigns of 5 days head-down bed rest: 1) bed rest without countermeasures (control), 2) bed rest and 30 min of AG (AG1) daily, and 3) bed rest and six periods of 5 min AG (AG2) daily. During centrifugation, the supine subjects were exposed to AG in the head-to-feet direction with 1 G at the center of mass. Subjects participated in the three campaigns in random order. The cardiovascular effects of bed rest and countermeasures were determined from changes in tolerance to a head-up tilt test with superimposed lower body negative pressure (HUT), from changes in plasma volume (PV) and from changes in maximum aerobic power (V̇o2peak) during upright work on a cycle ergometer. Complete data sets were obtained in eight subjects. After bed rest, HUT tolerance times were 36, 64, and 78% of pre-bed rest baseline during control, AG1 and AG2, respectively, with a significant difference between AG2 and control. PV and V̇o2peakdecreased to 85 and 95% of pre-bed rest baseline, respectively, with no differences between the treatments. It was concluded that the AG2 countermeasure should be further investigated during future long-term bed rest studies, especially as it was better tolerated than AG1. The superior effect of AG2 on orthostatic tolerance could not be related to concomitant changes in PV or aerobic power.