Published in

Cambridge University Press, Quaternary Research, 3(43), p. 433-436

DOI: 10.1006/qres.1995.1049

Links

Tools

Export citation

Search in Google Scholar

Stability of Holocene Climate Regimes in the Yellowstone Region

Journal article published in 1995 by Cathy Whitlock, Patrick J. Bartlein ORCID, Kelli J. Van Norman
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractA 12,500-yr pollen record from Loon Lake, Wyoming provides information on the climate history of the southwestern margin of Yellowstone National Park. The environmental reconstruction was used to evaluate hypotheses that address spatial variations in the Holocene climate of mountainous regions. Loon Lake lies within the summer-dry/winter-wet climate regime. An increase in xerophytic pollen taxa suggests drier-than-present conditions between ca. 9500 and 5500 14C yr B.P. This response is consistent with the hypothesis that increased summer radiation and the expansion of the east Pacific subtropical high-pressure system in the early Holocene intensified summer drought at locations within the summer-dry/winter-wet regime. This climate history contrasts with that of nearby sites in the summer-wet/winter-dry region, which were under the influence of stronger summer monsoonal circulation in the early Holocene. The Loon Lake record implies that the location of contrasting climate regimes did not change in the Yellowstone region during the Holocene. The amplitude of the regimes, however, was determined by the intensity of circulation features and these varied with temporal changes in the seasonal distribution of solar radiation.