Published in

Cell Press, Chemistry and Biology, 7(21), p. 866-879, 2014

DOI: 10.1016/j.chembiol.2014.05.014

Links

Tools

Export citation

Search in Google Scholar

Mechanism of Action of Compound-13: An α1-Selective Small Molecule Activator of AMPK

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AMPK is a sensor of cellular energy status and a promising target for drugs aimed at metabolic disorders. We have studied the selectivity and mechanism of a recently described activator, C2, and its cell-permeable prodrug, C13. C2 was a potent allosteric activator of α1-complexes that, like AMP, also protected against Thr172 dephosphorylation. Compared with AMP, C2 caused only partial allosteric activation of α2-complexes and failed to protect them against dephosphorylation. We show that both effects could be fully restored by exchanging part of the linker between the autoinhibitory and C-terminal domains in α2, containing the equivalent region from α1 thought to interact with AMP bound in site 3 of the γ subunit. Consistent with our results in cell-free assays, C13 potently inhibited lipid synthesis in hepatocytes from wild-type and was largely ineffective in AMPK-knockout hepatocytes; its effects were more severely affected by knockout of α1 than of α2, β1, or β2.