Published in

American Astronomical Society, Astrophysical Journal, 2(780), p. 150, 2013

DOI: 10.1088/0004-637x/780/2/150

Links

Tools

Export citation

Search in Google Scholar

DIRECT MEASUREMENT OF INTERSTELLAR EXTINCTION TOWARD YOUNG STARS USING ATOMIC HYDROGEN Lyα ABSORPTION

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Interstellar reddening corrections are necessary to reconstruct the intrinsic spectral energy distributions (SEDs) of accreting protostellar systems. The stellar SED determines the heating and chemical processes that can occur in circumstellar disks. Measurement of neutral hydrogen absorption against broad Lyman-$α$ emission profiles in young stars can be used to obtain the total H I column density (N(H I)) along the line of sight. We measure N(H I) with new and archival ultraviolet observations from the Hubble Space Telescope ($HST$) of 31 classical T Tauri and Herbig Ae/Be stars. The H I column densities range from log$_{10}$(N(H I)) $≈ 19.6 - 21.1$, with corresponding visual extinctions of A$_{V}$ $= 0.02 - 0.72$ mag, assuming an R$_{V}$ of 3.1. We find that the majority of the H I absorption along the line of sight likely comes from interstellar rather than circumstellar material. Extinctions derived from new $HST$ blue-optical spectral analyses, previous IR and optical measurements, and new X-ray column densities on average overestimate the interstellar extinction toward young stars compared to the N(H I) values by $∼ 0.6$ mag. We discuss possible explanations for this discrepancy in the context of a protoplanetary disk geometry. ; Comment: 20 pages, 10 figures