Published in

American Association for Cancer Research, Clinical Cancer Research, 21(21), p. 4947-4959, 2015

DOI: 10.1158/1078-0432.ccr-14-2955

Links

Tools

Export citation

Search in Google Scholar

CDK4 Amplification Reduces Sensitivity to CDK4/6 Inhibition in Fusion-Positive Rhabdomyosarcoma

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Purpose: Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma and includes a PAX3– or PAX7–FOXO1 fusion-positive subtype. Amplification of chromosomal region 12q13–q14, which contains the CDK4 proto-oncogene, was identified in an aggressive subset of fusion-positive RMS. CDK4/6 inhibitors have antiproliferative activity in CDK4-amplified liposarcoma and neuroblastoma, suggesting CDK4/6 inhibition as a potential therapeutic strategy in fusion-positive RMS. Experimental Design: We examined the biologic consequences of CDK4 knockdown, CDK4 overexpression, and pharmacologic CDK4/6 inhibition by LEE011 in fusion-positive RMS cell lines and xenografts. Results: Knockdown of CDK4 abrogated proliferation and transformation of 12q13–14-amplified and nonamplified fusion-positive RMS cells via G1-phase cell-cycle arrest. This arrest was mediated by reduced RB phosphorylation and E2F-responsive gene expression. Significant differences in E2F target expression, cell-cycle distribution, proliferation, or transformation were not observed in RMS cells overexpressing CDK4. Treatment with LEE011 phenocopied CDK4 knockdown, decreasing viability, RB phosphorylation, and E2F-responsive gene expression and inducing G1-phase cell-cycle arrest. Although all fusion-positive cell lines showed sensitivity to CDK4/6 inhibition, there was diminished sensitivity associated with CDK4 amplification and overexpression. This variable responsiveness to LEE011 was recapitulated in xenograft models of CDK4-amplified and nonamplified fusion-positive RMS. Conclusions: Our data demonstrate that CDK4 is necessary but overexpression is not sufficient for RB–E2F–mediated G1-phase cell-cycle progression, proliferation, and transformation in fusion-positive RMS. Our studies indicate that LEE011 is active in the setting of fusion-positive RMS and suggest that low CDK4-expressing fusion-positive tumors may be particularly susceptible to CDK4/6 inhibition. Clin Cancer Res; 21(21); 4947–59. ©2015 AACR. See related commentary by Gatz and Shipley, p. 4750